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ABSTRACT /)6;\,1)60
The theory of the extrema-effect in elastic impact spectra is
reviewed and extended. It has been shown previously that for any
realistic inter-particle potential (whose well has a capacity for
one or more bound states), extrema in the total elastic molecular
beam scattering cross sections are expected at certain characteristic
velocities. The limiting high-velocity spacing of successive extrema
ona 1/v plot is found to be inversely proportional to the product

of the well depth € times the inter-particle separation ¢ at

m
the potential minimum. It is shown that the constant of proportionality
is closely related to the curvature of the well, and thus to the

force constant of the di-atom (or "complex' molecule). Methods are
discussed for the extraction of the maximum amount of information on

the shape of the potential well from measurements of the extrema-

effect.

\¥ This research received financial support from the National
Aeronautics and Space Administration, Grant NsG-275-62.




Introduction and Review

It has been recognizeae/for some time that the most sensitive
means of evaluating the intermolecular potential is the molecular
beam scattering technigue. Measurements of the differentiazl zand
total elastic scattering cross sectiocns, J‘T‘e9911 and T (sometimes
designated Q ) over a wide range of relzative velccity v are, in
principle, sufficient to allow a determination of the orientation-
averaged potential function \/Oﬁ over a wide range of interparticle
separation r . Although formal “inversion™ procedures {cross
gsections —» potential} are known:e/ they have not yet seen practical
utilization. Rather, it has been customar§©/£o assume z reasonable
parametrized functional forgﬁ/for \/00 and to compute the (partial-
wave) scattering phase shifts ai(k) and cross cections as a function
of the relative velocity or the wavenumber k (.‘-.‘./U"/t » where u
is the reduced mass). The calculated cross sections are then
compared with observationge/and, by suitable variation of the
potential parameters, one converges cn a ‘'best set’ (subject to
the constraint imposed by the assumed functiomality cf the potential).

In general, scattering measurements at high collision energiegé/
yield information primarily on the short-range, repulsive forces

while thermal-energy6 measurements are especially semnsitive to the

\&’Typically the expression for V(p) involves '"strength' parameters
such as € , the depth of the attractive well, or C , the
long-range '"London'' attractive ccnstant, and "size' parameters
such as @ , the "collision diameter" (the zerc cf the

potential) or ¥, , the position of the minimum.



longer -range, attractive part of the potential. At a given energy,
differential cross sections at the iarger scattering angles (associated
with collisions of small impact parameter b, e.g., b£0T )

are responsive to the repulsive branch of the potential while the

lower angle scattering cross sections (governed principally by
collisions of large b ) are affected primarily by the long-range
interactions.

At thermal energies, due to the dominant influence of the long-
range attractive '"tail" of the potential, the angular distributions
are very strongly forward peaked, so the main contribution to the
total (elastic) cross section is that from very small angles.
Massey and Mth}/derived a simple expression for the velocity
dependence of the Eotal cross section (by introducing a ''random-
phase' approximation for the many large phase shifts of low £ and a
Jeffreys~Born (JB) approximation for the many small phase shifts

at high { ), valid for a potential asymptotically of the form
VirY ~ =@/t

el 2/
Qo) = F-(C/hw )" o

v

where P is a dimensionless constant”.

However, due to the concomitant short-range forces, undulatory

B8/ ¢ p = 8.08

VY Based on more recent treatmentgé/a "best" value
is obtained.




deviations from the monotonic v &k.dependence of the total cross
section are expected, i.e., extrema in the velocity dependence of
Q \Qh;ggh/. This so-called "extrema-effect™ is due to the
existencé§/of a broad maximum in the dependence of the phase shift
upon the angular momentum gquantum number 1 s Which provides a
significant number of non-random phases at intermediate l

The maximum phase ab“ increases with decreasing k and, if the
attractive well is deep enough (i.e., has a_capacity for one or
more bound states), zum(k\ can pass successively through several
multiples of 1@Q1 , giving rise alternately to positive and

negative incremental contributions A Q to the random-phase-

approximated Q , designated a . The increment A Q is found

to b;&gé/

a L,
aQz AT 22 Sin (20 3T7y)

k*(~7) @

where L.0 is the value of A for which 7 attains its
a
maximum value (k) ; “ _fd 7/02 0
) 7.,.‘ ”m ( /)f )Ao . Lo and 7‘"

are also dependent upon k . Thus the general condition for an

o/

extremum in Q 1is:

Nam( k) = T N-3/3) (3)

YyThis is due to the "competition' between a positive (attractive)
term and a negative (repulsive) contribution to the phase
shifts, characteristic of scattering by any potential with a well.



where the integer indices N = 1,2, ... denote maxima in @
and the half-integers N = 1,5, 2.5 ... minima; kN is the
wavenumber of the Nth extremum.

For any realistic potential with a well, the high-energy
behavior of the maximum phase in the J.-B. limit has the

\v

asymptotic form":

A~ C,ET
Tom ™ €T/ )

where the constant of proportiomnality ¢y depends somewhat upon
the particular functionality of the potential. For the simplest
practical two-parameter potential, the L.-J.(12,6), one findégg/
¢, = 0.8432M. Thus in the high-velocity limit, one has the

following velocity dependence of the extrema:

”-— 3/? ~s ¢ érm/U_N = A'/JN (5)

where JN is the Nth extremum-velocity. The VN may be
determined by insbection of experimental graphs of the (oscillatory)
function AQ/@ Vs, v (termedwelastic impact spectra).

Then, from Eq. 5, a plot of N-3/8 vs. ‘VI;‘ should pass through
the origin (thus fixing the index assignments), with initial

slope A1 yielding the € Van product, assuming a particular

potential function with given ¢

----- 10
\g}/In "reduced" notation, Eq. 4 may be written
.
P ~ A/ %"

where the "reduced phase' 7*;7/,(.,. and the reduced collision
energy K3 E/g = L uwiy, m




The extrema-effect has been used (somewhat as foliows) to
characterize the potential well for a number cf alkali and noble
gas systems}'l—]’/ First, £(6) is deduced from U (o7) (via Eq. 1).
Then from the elastic impact spectrum and the resulting N (U'”")
plot, the €fam product is evaluated, assuming a L.-J.(12,6)
functionality (i.e., a specified cl). Since for this potential
C(6) = Q€ r.m", € and (., may be separately obtained. These
may serve as initial values in an iterative computational procedure,
in which the potential constants as well as functionality can be
altered, and the successively computed A%(J)Curves compared with
exper iment.

The amplitude of the oscillations in AQ/E is well approximated\m

by the semiclassical relation

- lAQ'MOX - 477yal‘o 4L an 7
U= = 2 Y —_— [“"‘, ]
i Calpgs T g LTeA ®)

= + 4 i i
where 4= (4 Z“)/A ¢ L/A is the reduced impact parameter (/60 the
value corresponding to Lo) and 9::()0/3’3; is the slope of the
[ ]

classical deflection function ©( @8 ) at its zero, /60 .

Thus, given accurate experimental amplitudes one may extract

i PV o -

the ratio /9./(- 9”) -} which is sensitive to the assumed
functional form of the potential. Unfortunately, due to the
blurring effect of even residual beam velocity distributions the
observed amplitude U(l.f) is smaller than the true U(U), so that

it is difficult to improve substantially on the initial value of €,




It should be noted that once the indices N are correctly
assigned from a bl(«n;ﬁ plot it becomes possible to deduce

directly from the experimental extrema-velocities, via Eq. 3,

\ 4

absolute values¥ of the maximum phase shift J),, as a function of

k or 4r . The experimental results may be fitted to a power
series in reciprocal velocity and ratiocs of successive coefficients
compared with calculations based on various assumed functional
forms of V(r).

The important constant of proportionality ¢ (between the

1

experimental initial slope, A13 and the desired € f,m product)

is not fully independent of the shape of the potential. It will

be shown that (for a given € and PFam ) the constant is governed

%
primarily by the curvature of the potential at its minimum.

\?/ The extrema-effect appears to be the only example of a direct
experimental method for the determination of an absolute
scattering phase shift; ordinarily it has been assumed that
experiment can only reveal phase shifts modulo TU .

Vﬁ/ln Ref. 10b, useful tables are presented listing the three
extrema-quantities ¥ , A, and 6 as a function of K for
the Kihara (e,12,6) potential w1th the "core' parameter in
the range -0.3 & & < 0.5, similar calculations for the
L.-J. (n,6) potential were summarized by an "equivalence
table, i.e.; n 4¥» =« for which the extrema-quantities were
essentially identical, The experiments of Rol and Rothe 2
on the Li-Kr system which had been analyzed in Ref. lla in
terms of a L.-J.(12,6) function, were re-analyzed and a
"pest fit" of aQ/a(v)obtained with o = 0.2, corresponding
to n = 23. The inference might be drawn that the repulsive
index, n, of the interaction is deducible from extrema
measurements. It is suggested that a more corréct 1nterpretat10n
of the re-analysis is that the curvature of the well is
greater than that of a L.-J.(12-6) well of the same € and T,y .




Considerations on the Maximum Phase 3hift and the Curvature of the Well

Within the framework of the semiclassical treatment of
scattering, the JWKBL phase shift is independent of V(r) for
r < L the classical turning point of the radizl motion.

It is recalledw that

7,0k = k [ ﬁ Fem ] dr - g [F”’(rﬂy’v"J
(7)
r, b

where F(ri & /- Yif.Ef—(—r) 5 Ve»;;(')= Vi + Eb‘/,d (the effective
potential), Fw,_r) = /- ba/r“ and [‘-I kb ; the outermostv zZero
of F(r), 1.e., F(ro) = 0 , defines the turning point. For all
impact parameters b > U (the zerc of the potential), the
centrifugal potential is sufficiently great that T, > U'; This

follows since for V(r ) » O

3
2

N 7
f;:b}:/* ’\/U'L)/E]‘1 > b >« ,

(8)

while for V(ro) <0, r > O (trivially).
As an illustration, Fig. 1 shows the "reduced" classical turning
points Z,%2 fa/,f-m plotted vs. 8= lyy-m at various reduced

energies K = E/¢ ; for an Exp (14,6) potential. Thus, providedw

% Quantum mechanically some penetration of the wavefunction (and,
for collision energies below the classical critical value for
orbiting, tunneling through the centrifugal barrier) occurs,
but this is of secondary importance in the present connection.

k% For all practical potentials this inequality is found to be
satisfied. E.g., for the L.J. (n,6) potential it is readily
shown that Ao > V/rm for all n> 7.



/30 > Qthif the maximum phase 7m, is independent of V(r) for

all positive (repulsive) values of the potential. Strictly, then,

it is not possible to zcquire information deaiing with the repulsion

(V(r) > 0) from measurements of the extrema-effect. The entire

informaticn content of such experiments i: confined tc the attractive

well. This suggests that a suitable description of the pctential

from the viewpoint of the extrema analysis is one which specifies

(in addition to € and r ) the curvature of the well. Thus, if

V(r) is expanded around the minimum it is plausible that the

leading (quadratic) term may be deducibie from egtrema measurements.
( . .. . N s

All the semi-empirical potential functicnus are readily

expanded:

" a & ﬂgi? ¥'Oﬂ%c0
V() =-1+E AT '*Z: gy 9)

m=3

S . . -
where V = V/g is the reduced potential; f z 271 is the
LXW2 4

“reduced displacement”. & E(J//‘)r)
and fM(O)-‘()m%SM)o ° a

is the "reduced curvature®

a
In conventional terminology the force constsant is k= ‘5"7/'C/¢‘U<

=xe/r;m’~: Koﬁ/re" where the spectroscopic sywbols have their usual

¥ Of course, from a knowledge of the shape of the well (i.e.,
curvature at the minimum) one may estimate the ratic @/p, and
the slope cf V(r) near r =

V% Expansion ccefficients for the L.—J.(n§6), Exp. (o ,6) and Morse
( @) potentials have been published.1 Convergence of (9) is
achieved only if 0 < 2 < 2,




meanings. One expects, of course, that in addition to the curvature,

further higher-order terms in Eq. 9 are required for accurate

determination of :"W However, the principal dependence of

7],:(1() should be upon Y ; i.e., the coefficient of the leading
term (a' in Eq. 4') should be well correlated with ¥ . |
The maximum reduced phase may be expanded in powers of K-%
(extending Eq. 4'): |

.4 -(m+1)/
e ) Gk

m=1 (10)

where the dimensionless an coefficients are (within the framework
of the semiclassical approximation) independent of/a , €& and roo
depending only on the 'shape'" of the potential.

As will be shown, a is a slowly-varying function of M over

1

a rather wide range of § ; thus Grm may be estimated to within

about +10 per cent directly from an experimental value of A1 .

Of course, if the € and r =~ were known sufficiently well from
independent considerations (e.g. to + 1 per cent in the erm

product), then from the experimental A. and the known dependence

1

of a1

the di-atom force comstant).

upon M one could deduce the curvature of the well (and

\4 Auxiliary calculations have shown that the potential must
be known out to Z = 2 in order to achieve the requisite
accuracy in 7m .
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Computational Procedures

* JWKB
Semiclassica} reduced phases 7Z 5 L

( B ;K) were computed
via Eq. 7 for three commonly used potentials, following procedures
similar to those used earlier™, but with improved accuracy of
quadrature. The resulting 7*’ values were numericaiily gccurate
to within about +0.00001, independent of any systematic errors

associated with the approximation (Eq. 7) itself.

The potentials were expressed in the reduced forms

rorencian 12 1= () ()" (22 ) (12"

(1101)
Potential 2: V*: {"‘q )13 “Afl-x ¢
K = Y- (11.2)
©
Potential 3¢ \/:: (:ﬁ_b ) %[- ] (r/fm-‘)]- (a_"(_.__‘ ) (_r%ﬂ_) (11. N

The range of K investigated was from 1,2\tc_> 100 (lower K's
would introduce the complication of three turning points\l—s/
(classical orbiting), while for higher K's the ?::,‘ values are
so small that the percentage error is larger than desired. 1In
general the range of /6 was restricted to the region in the

neighborhood of A. (e.g. .8 < B8 < 1.3); the maximum in the
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f{p)curve was cbtained by a 3-point Aitken interpolation which also
It
ielded and (97 1)
y /do /),3 A
For the eventual purpose of correlation of these results with
curvature } , the following equivalence relationships between

potential parameters and M have been used:

Potential 1: =6m (12.1)
T )
- . . : __#a
Potential 2: P 4 (1- "K) (12.2)
R’E'7 '
Potential 3: X=6%¢ (—-—‘) 12.3)
" g~ 6 ¢

Fig. 2 is a nomograph relating the various indices 0y o e
o, With ¥ . (Included also is the Morse function with
index QAm).

The maximum phases 7:\ (K) were computed for variocus values
of these indices over a range of ¥ from 48-108 for potentials
(1)-(3). The results were expressed in terms of power series in K
according to Eq. 10; the coefficients were evaluated bty a modified
Aitken polynomial method. A four-term expansion fitted the
values to within about +.1 per cent. It was foiund that, aside from
the ay .(obta‘ined theoretically by the JB procedure), the expansion
coefficients depended only very slightly on X . Moreover these

higher coefficients (32-34) are essentially invariant to the functional

form of the potential. Since a simple set of constant
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expansion coefficients (see Results), alcng with the theoretical

¥
values of a; 5 can be used tc reproduce the tables of qh“ﬂf)to
within a maximum deviation of 0.3 per cent, these tables will not be

presentedﬂy

Results

Fig. 3 shows a sample of the behavior cf %:‘ as a function of
1/RK  for the three potentials, each at three specified (common)
values of curvature }# . The curves are seen to group together
according to curvature.

The deviation from the high energy, limiting behavior (eq. 4')
is best shown in graphs of the product 7:‘( vs. 94( , as
illustrated in Fig. 4 for the same set of calculations. Here again
the '"family'" structure is apparent, curvature being the dominant

factor. Note that the ordinate intercept of the curve (via

extrapolatio@ gives a ''computationally evaluated" a- These agree (+C.1

with the JB-calculated a

| values (see Appendix).

The constants of the semi-empirical equations for 7:;

(following the form of Eq. 11) are presented in Table I.

* By introducing a slight & dependence in the expansion
coefficients a, and a, the maximum deviation can be
decreased by about a factor of two.

%70)




Table 1

. P _ ¥ .
Expansion Coefficients (a1 34) for thﬂ<)Accord1ng to Eq. 10

2
_E;_ Potential 1 Potential 2 Potential 3
48 .47000 47421 .45208
60 L44113 L44432 .43063
72 .42156 .42156 41462
84 .40727 .40338 . 40232
96 . 39630 . 38838 .39257
108 .38757 . 37568 . 38465
120 .38043 . 36474 . 37808
132 . 37446 . 35515 .37253
144 . 36938 . 34666 .36776
B -3
a, = 2.0x10
a; = -1.90 x 1071
a, = B8.8x 1072

The a; coefficients listed are the theoretical (J.-B.) values,
while the higher coefficients were evaluated by the Aitken fitting
procedure mentioned earlier. The al's coulld be expressed in

closed form only for potential 1. The analysis for the other two
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potentials involved the solution of tramscendental equations and
power series expansicns (see appendix). The (L -dependence of the
important parameter a, is shown in Fig. 5. Here al(XL.) shows

a broad region (70 & X ¢ 130) in which (a) the slope is essentially
constant ( Ja'/dK';-9 X 10_4) and (b) the results for the three

potentials are very similar.

Conclusions

The excellence of the correlation of a, with J , nearly
independent of the particular functionality of the potential, confirms
the suggestion that the third 'characterization parameter' of the
potential should be the curvature of the well. Since the higher
order coefficients (az-aa) are found to be completely invariant to
the functionality of the potential and essentially independent of £ ,
an experimental determination of the ratios a2/a1 and a3/a1 (from

plots of Nv_ vs. V&l) should allow (via Table I) an estimate of K

N

and thus the di-atom force constant.
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Appendix

High-energy limiting forms for the extrema-quantities 7,:1 and

Ao, may be obtained from the J.-B. approximation for the phase ehlft\_ﬁ—-—t——/g 10a,16

. These were obtained in closed form only for potential 1. In this case

e B () [ (%) fm] 7 e
A [ % (m)]”‘ (a-2)
where%

R L

(A-3)

For potential 2

wd8_ [1-w)"

/ ) (- =)
7= Kk j jx"h‘-/s’(l-"/xy ax"(x747 (1 - Y% )? ] (A-4)

. «, \M
The integrals were evaluated by expanding the factor of (l“ /7)
in a convergent power series. Then 7* can then be written in

the form
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T Tk (e p /oay A
k
(k+5)! L(k+3)l (—}3)
+ g
Z. 1a¢ k! T
k4,35 /'3"’(&4%)/5
4‘
ko) k! (k+5)! ]
+IAO(LH)? [(Ig_:})cj* (J/g)lwc
: (k+?
S0m0¢ ket gk (Bet)r 2t o
2 "k /.3..,(‘;”/0)/’.1.1’:: (A-5)

b
= U= (kt1a)! ket (kew): 7
A 1! (R+1)! [(/%_)_/)!}‘2 “/g)kﬂ.l]

Substitution of A, (the solution cf the equation ()7/)/3 =0 )

*J8

in Eq. A-5 yields %;n Sufficient terms were carried in the

v I8

expansion to insure convergence of the value of om O +.000001.
This required terms as high as k = 40 for low ¥ (i.e. negative & ).

To evaluate the corresponding quantities for potential 3 to

the requisite accuracy the necesgsary higher order expansion terms

were added to Eq. 10b of Ref. . This equation then becomes
. 3T = ; o B ph
T 32 GK/.? F3 3/.2

3 _ 48, ., /08 —j A-6
x[’*'ym iasigr ¥ jpag s’ } (4-6)

Again 7;36 may be evaluated by substitutiag /z,(found, as before,
by differentiation of 7*3% in Eq. A-6.
It can be seen from Eq. 4' that the expressions for a, are

obtained directly from Eqs. A-1,5,6 by suppressing the factor 1/K .
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legends for Figures

. Reduced classical turning points for the Exp (14,6) potential
as a function of reduced energy K. The curves cross at a
i = = = = /
common point when r_ =b = 0, or z /3 (i"/rm .
. Nomograph relating the various indices of Potentials 1, 2 and 3
with the reduced curvature K .
* I ,
. Dependence of '7 upon /K for Potentials 1, 2 and 3, each at
n .
the specified values of & .
* | . .
. Dependence of 'Yl K upon /K for Potentials 1, 2 and 3, as in
m
Fig. 3.
. Dependence of the ay parameter upon K for Potentials 1, 2
and 3. The expressions for al(K) in the three cases are given

in the Appendix.
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